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d-VMP: Distributed Variational Message Passing
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Abstract

Motivated by a real-world financial dataset, we propose a distributed variational message
passing scheme for learning conjugate exponential models. We show that the method can be
seen as a projected natural gradient ascent algorithm, and it therefore has good convergence
properties. This is supported experimentally, where we show that the approach is robust
wrt. common problems like imbalanced data, heavy-tailed empirical distributions, and a
high degree of missing values. The scheme is based on map-reduce operations, and utilizes
the memory management of modern big data frameworks like Flink to obtain a time-efficient
and scalable implementation. The proposed algorithm compares favourably to stochastic
variational inference both in terms of speed and quality of the learned models. For the
scalability analysis, we evaluate our approach over a network with more than one billion
nodes (and approx. 75% latent variables) using a computer cluster with 128 processing
units.

1. Introduction

This paper is motivated by a real-life dataset from a Spanish financial institution. The
long-term goal is to learn a generative model for the data-set, with a dual view towards
monitoring the set of customers as a whole and making predictions for single customers
(e.g., finding the probability that a given customer will default on his obligations within a
certain time-frame). The dataset has some complicating characteristics: i) The number of
missing observations is high, with a degree of missingness typically in the range from 30% to
90% for key variables. ii) The distributions for a number of key variables, e.g., balance, are
zero-inflated and have heavy tails (see Figure 3 (left) for an example). iii) The dataset is
imbalanced in the sense that there are few customers from important customer groups (like
defaulters). iv) The dataset is of considerable size, hence a flexible model structure will have
to be combined with efficient approximate inference and learning techniques.

Stochastic approximation theory (Robbins and Monro, 1951; Kushner and Yin, 1997)
has been one of the main tools employed for scaling variational inference algorithms (Welling
and Teh, 2011; Foulds et al., 2013; Khan et al., 2015) over the last few years, with the
Stochastic Variational Inference (SVI) algorithm (Hoffman et al., 2013) being the most
prominent approach. The SVI algorithm iteratively updates the model parameters based
on subsampled data batches. However, even though the algorithm learns the parameters
consistently, it neither estimates all the local hidden variables of the model (i.e., the latent
variables describing a customer not in the current data-batch) nor does it generate the full
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evidence lower bound that can be useful, e.g., for model comparison tasks or monitoring
convergence.1

A key assumption for the SVI algorithm’s scalability is that each batch of data gives an
unbiased albeit noisy estimate of the true gradient of the objective function. While this is
necessarily true when the data for a batch is selected randomly, the algorithm is a poor fit
for the financial dataset because the noise level (in terms of variation in the gradient between
batches) is too large. To see the problem, consider a model, which contains a mixture of
Gaussians to capture the balance of defaulting clients (which represents a tiny but relevant
group of clients). A mini-batch of a few hundred samples2 will result in very few observations
of defaulters, even fewer with an observed value of the variable in question, and only rarely
will an observation come from the tail of the distribution.

An immediate solution to this problem can be to increase the batch-size, but to this end
it is worth noticing that if the full dataset is stored using a distributed file system like hdfs
(Dean and Ghemawat, 2008), the stochastic approaches are confronted with an additional
problem: While data sub-sampling can be performed in parallel, the batches must be sent
through the network to the master node, where the main computations take place. Such
data traffic is the main bootle-neck of a computer cluster, and this prevents the use of big
data batches. One could also envision solving this problem by better exploiting the hardware
available in the cluster, and following the distributed approach of Broderick et al. (2013).
However, that solution strategy gives rise to new subtle problems when combining the local
posteriors (Campbell and How, 2014). As a consequence, if the original data set contains
hundred of millions of samples, the subsampled batches will always represent only a tiny part
of the data, and the result (as we will see in Section 4 where we report on our experiments)
is a poor model fit.

Our solution is therefore rather to define a distributed and scalable version of the
variational message passing (VMP) scheme (Winn and Bishop, 2005) for approximate
Bayesian parameter learning, which, as a bi-product of the developments, leads to increased
understanding of VMP as a projected natural gradient ascent algorithm. We show empirically
that our approach is able to capture the peculiarities of the financial dataset and, at the
same time, provide better and faster convergence results compared to the SVI algorithm.
We analyze the scalability of the algorithm using a model with more than a billion nodes
(and approximately 75% latent variables) running on a computer cluster with 128 processing
units.

Contributions: We cast VMP as a projected natural gradient ascent algorithm, which
gives a theoretical and practical foundation for parallelization of learning in models with a
large set of global parameters. When compared to SVI, we find that our approach is more
robust (see Section 4), is defined for a broader class of models, and has the ability to produce
important quantities like the posterior over all latent variables and the full evidence lower
bound.

1. Exactly how to do the update has attracted considerable research attention (Duchi et al., 2011; Mandt
and Blei, 2014; Khan et al., 2015).

2. This is a typical batch-size in the literature; values from 10 to 1000 were for instance used by Hoffman
et al. (2013).
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2. Preliminaries

2.1 Models

In this paper, we focus on conjugate exponential Bayesian network models for performing
Bayesian learning on iid. data. To simplify the presentation and discussion in the paper,
we shall focus on model structures of the form in Figure 1 (left), although the proposed
algorithm also applies to more general types of models; we shall return to this issue at the
end of this section. The model in Figure 1 (left) includes observable variables X = X1:N , a
vector θ = θ1:M of global hidden variables (or parameters), a vector of local hidden variables
H = H1:N , and a vector of fixed parameters denoted by α. Note that Xi and H i are
themselves collections of variables. We shall use D = d1:N to denote the available data, i.e.,
the observed values of X.

With the conditional distributions in the model belonging to the exponential family, we
have that all distributions are of the following form

ln p(X|pa(X)) = lnhX + ηpX(pa(X))TsX(X)−AX(ηpX(pa(X))), (1)

where pa(X) denotes the parents of X in the directed acyclic graph of the induced Bayesian
network model. The scalar functions hX and AX(·) are the base measure and the log-
normalizer, respectively; the vector functions ηpX(·) and sX(·) are the natural parameters
and the sufficient statistics vectors, respectively. The subscript X means that the associated
functional forms may be different for the different factors of the model, but we may remove
the subscript when clear from the context. Similarly, we will sometimes omit the superscript
p when it is clear which distribution the natural parameters ηX belong to.

By also requiring that the distributions are conjugate, we have that the posterior distri-
bution for each variable in the model has the same functional form as its prior distribution.
Consequently, learning (i.e. conditioning the model on observations) only changes the values
of the parameters of the model rather than the functional form of the distributions. This
can be achieved by expressing the functional form of p(X|pa(X)) in terms of the sufficient
statistics sZ(Z) of any of the parents Z ∈ pa(X) of X:

ln p(X|pa(X)) = lnhZ + ηXZ(X, coZ(X))TsZ(Z)−AZ(ηXZ(X, coZ(X))), (2)

where coZ(X) denotes the coparents of Z with respect to X, i.e. coZ(X) = pa(X) \ {Z}.
This model family is more general than the one covered by SVI (Hoffman et al., 2013).

Our approach can accommodate models with arbitrarily complex dependency structures
among the local hidden variables, the observed nodes, and the global parameters. Observable
nodes can also have missing values. As an example, the model presented in (Borchani et al.,
2015a) (a dynamic classification model with a global hidden variable on top of the predictive
variables) fits within this model family, but not within the family supported by SVI. Moreover,
as will be discussed below, we also allow for factorized posterior approximations over the
global parameters, which is also not supported by SVI (Hoffman et al., 2013).

2.2 Variational message passing

Variational Message Passing (VMP) is an algorithm for performing variational inference
over general models belonging to the conjugate exponential family (Winn and Bishop, 2005).
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Variational inference is a deterministic technique for finding tractable posterior distributions,
denoted by q, which approximates the Bayesian posterior, p(θ,H|D), that is often intractable
to compute. More specifically, by lettingQ be a set of possible approximations of this posterior,
variational inference solves the following optimization problem for any model in the conjugate
exponential family:

min
q(θ,H)∈Q

KL(q(θ,H)|p(θ,H|D)), (3)

where KL denotes the Kullback-Leibler divergence between two probability distributions.
In the mean field variational approach the approximation family Q is assumed to fully

factorize:3

q(θ,H) =

M∏
k=1

q(θk)

N∏
i=1

J∏
j=1

q(Hi,j),

where J is the number of local hidden variables, which is assumed fixed for all i = 1, . . . , N .
For a conjugate exponential model, each of the components q(θk) will belong to the same
exponential family as the prior p(θk|pa(θk)); the same holds true for the local variables Hi,j .
We can therefore represent the variational posteriors by their natural parameter vectors,
which are denoted by ηθk . Again, subscripts will be removed when clear from the context.

To solve the minimization problem in Equation (3), the variational approach exploits the
transformation

lnP (D) = L(q(θ,H)) +KL(q(θ,H)|p(θ,H|D)),

where L(·) is a lower bound of lnP (D) since KL(·, ·) is always non-negative. As the factor
lnP (D) is constant, minimizing the KL term is equivalent to maximizing the lower bound.
Variational methods maximizes this lower bound by applying a coordinate ascent that itera-
tively updates the individual variational distributions while holding the others fixed (Winn
and Bishop, 2005).

Updating a variational distribution essentially involves calculating the variational expec-
tation of the logarithm of the original conditional distributions of the model. VMP exploits
the fact that this operation can be done efficiently and in closed form when the distributions
involved are conjugate-exponential (Beal, 2003). Moreover, the operations can be done
locally, which means that updating the variational distributions of a variable X only involves
variables in the Markov blanket of X:

ηqX = Eq(η
p
X(pa(X))) +

∑
Y ∈ch(X)

Eq(η
p
XY (Y, coX(Y ))). (4)

The natural parameter vectors ηpX and ηpXY are multi-linear functions wrt. the natural
statistics vectors of the variables on which they depend (Winn and Bishop, 2005). This
means that we can move the expectations inside ηpX(pa(X)) and ηpXY (Y, coX(Y )), and due
to the mean-field approximation we can calculate the required expectations independently
for each of the sufficient statistics vectors involved. With a slight abuse of notation we can
therefore rewrite Equation (4) as

ηqX = ηpX({Eq(s(Z))|Z ∈ pa(X)}) +
∑

Y ∈ch(X)

ηpXY ({Eq(s(Y ))} ∪ {Eq(s(Z))|Z ∈ coX(Y )}).

3. Although more general mean-field approximations can also be used (Winn and Bishop, 2005).
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Figure 1: Probabilistic Models covered by d-VMP: (left) A plate model representation. (right)
An unfolded model in a cluster with 3 slaves.

From this expression, the coordinate ascent algorithm can be formulated as a message passing
scheme. The message sent from a parent node X to a child node Y is the expectation of the
natural statistics vector of X wrt. q, and the message from a child Y to a parent X is based
on the messages Y has received from the co-parents of X:

mX→Y = Eq(s(X)) mY→X = ηpXY ({Eq(s(Y ))} ∪ {Eq(s(Z))|Z ∈ coX(Y )}). (5)

Based on the messages specified above, we see that once X has received messages from all
its neighbors, its updated variational distribution is given by

ηqX = ηpX({mZ→X |Z ∈ pa(X)}) +
∑

Y ∈ch(X)

mY→X ;

the implied expectations can be calculated based on the equality EqX (s(X)) = ∇ηX
AX(ηX).

3. Distributed VMP (d-VMP)

3.1 Distributed optimization of the lower bound

In this section, we show how we can perform distributed optimization of the lower bound
function L using the same kind of messages as in regular VMP, but with a changed scheduling
of these messages.

VMP optimizes L using the coordinate ascent method previously mentioned. For the
kind of models we are considering (see Section 2.1), the lower bound function L decomposes
as follows:

L(q(θ), q(H)) = Lθ(q(θ)) +
∑
n

Ln(q(Hn), q(θ))

where Lθ(q(θ)) = Eq(ln p(θ))− Eq(ln q(θ)) and Ln = Eq(ln p(dn,Hn|θ))− Eq(ln q(Hn)).
The optimization of the L function can be partly distributed by exploiting the fact that

messages to the local variables in Hn do not depend on messages from other local variables
Hn′ for n 6= n′ and, consequently, if we keep q(θ) fixed we can maximize in parallel each of
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the Ln functions. In other words, the solution of the maximization problem

q(t+1)(H) = argmax
q(H)
L(q(H), q(t)(θ)) (6)

decomposes into the following independent maximization problems, which can be solved in
parallel,

q(t+1)(Hn) = arg max
q(Hn)

Ln(q(Hn), q
(t)(θ)). (7)

If we consider Figure 1 (right), the above procedure would entail that the master node
broadcasts to the slave nodes the current posterior over the global parameters q(t)(θ). Each
slave then solves in parallel the local optimization problem of Equation (7) using VMP by
keeping fixed its local copy of the posterior over the global parameters q(t)(θ) and sending
messages between the local hidden variables until convergence of the local lower bound, Ln,
for data samples dn locally stored at the slave. The next step in the coordinate ascent
method,

q(t+1)(θ) = argmax
q(θ)
L(q(t)(H), q(θ)) (8)

could, at first glance, be solved as follows: after solving Equation (7) each slave computes
the local messages from Hn and dn to θ and sends them back to the master node. The
master node then collects all the messages from the slaves and proceeds with the updating
of the global parameters θ. Unfortunately, this last step is not immediately applicable for
the general kinds of models we are considering. The difficulty is that the global parameters
may be directly coupled through the VMP updating rules (see Equation (5)) and they
can therefore not be updated independently of each other; recall that two variables are
coupled if they appear in each others’ Markov blankets. As an example, consider the model
Y (j) =

∑n
i=1 βix

(j)
i + ε(j), where βi, ε(j) ∼ N (0, 1). Assuming that we make an observation

over Y ,x, then by updating all the variational posteriors over the βis independently and in
parallel, each of these posteriors would try to accommodate the observations and, in effect,
potentially over-compensate and fail to converge.

There are two immediate solutions to the above problem. The first is to update the q(θi)s
sequentially. That is, after each update of a global parameter θi, we recompute the local
messages from Hn and dn to θ′ using the last updated q(θi). With this approach we handle
parameter coupling by always updating global parameters in light of the other parameter
updates that have been performed. Unfortunately, with this approach we need to iterate over
all global parameters, and for each iteration we have to recompute all the messages in the
local models. For models with many global parameters (e.g. having a large n in the linear
regression model above), the algorithm would incur a big overhead. Another solution would
be to employ a generalized mean-field approximation that does not factorize over the global
parameters. This would be in the spirit of the SVI algorithm (Hoffman et al., 2013), but,
unfortunately, this approach is also prohibitive for models with a large number of (coupled)
global parameters.

In order to overcome these difficulties, we instead propose a gradient ascent-based
algorithm, which we derive from the observation that VMP can be considered a projected
natural gradient ascent algorithm.
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3.2 VMP as a projected natural gradient ascent algorithm

In this section we extend the analysis carried out in (Sato, 2001; Hoffman et al., 2013) to
general conjugate exponential models and show how the message passing scheme of VMP can
be interpreted as a projected natural gradient ascent algorithm (Luo and Tseng, 1993). For
any variable X in the model, the lower bound L with respect to q(X) can be expressed as

L(q(X)) = Eq(ln p(X|pa(X)))− Eq(ln q(X)) +
∑

Y ∈ch(X)

Eq(ln p(Y |X, coX(Y )) + const.

Using the conjugacy properties of the exponential models and the equality Eq(s(X)) =
∇ηX

AX(ηX) we can rewrite the above equation in terms of the natural parameters of q(X):

L(ηX) = Eq(η
p
X(pa(X)))∇ηX

AX−ηTX∇ηX
AX+AX+

∑
Y ∈ch(X)

Eq(η
p
XY (Y, coX(Y )))T∇ηX

AX ;

where AX implicitly takes ηX as argument. We can now derive the gradient of L with respect
to ηX based on Equation (5):

∇ηX
L = ∇2

ηX
A

T

X(ηX)
(
ηpX({mZ→X |Z ∈ pa(X)}) +

∑
Y ∈ch(X)

mY→X − ηX
)
. (9)

As pointed out in (Sato, 2001), Equation (9) can be used to compute the natural gradient
of L, denoted ∇̂L, by premultiplying the gradient of L by the inverse of the Fisher information
matrix of q(X), denoted by G(ηX) (which acts as a Riemannian metric over the parameter
space of the statistical model),

∇̂ηX
L(ηX)

.
= G(ηX)

−1∇ηX
L(ηX).

For the exponential family, this Fisher information matrix corresponds to the Hessian of the
log-normalizer, G(ηX) = ∇2

ηX
AX(ηX). Consequently, the natural gradient of L can simply

be computed as

∇̂ηX
L = ηpX({mZ→X |Z ∈ pa(X)}) +

∑
Y ∈ch(X)

mY→X − ηX .

In light of the above equation, VMP can be seen as a gradient ascent method moving in
orthogonal direction across the natural gradient with steps of length one,

η
(t+1)
X = η

(t)
X + ∇̂ηX

L(η(t)) = ηpX({m
(t)
Z→X |Z ∈ pa(X)}) +

∑
Y ∈ch(X)

m
(t)
Y→X .

The above updating scheme corresponds to a projected natural gradient ascent algorithm
(Luo and Tseng, 1993) by restating the above equation as follows,

η
(t+1)
X = η

(t)
X + ρX,t[∇̂ηL(η(t))]+X (10)

where [·]+X denotes the orthogonal projection onto the coordinate X and ρX,t denotes the
sequence of learning rates for the coordinate X, which in case of VMP is always equal to 1.
This is also the optimal value because in every step we reach the maximum of L over this
coordinate. Iterating over all the coordinates guarantees the convergence of the projected
gradient ascent algorithm of Equation (10) to a stationary point of the function L (Luo and
Tseng, 1993).
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3.3 d-VMP as a distributed projected natural gradient ascent algorithm

In light of the above derivation, we can devise a distributed optimization algorithm, detailed
in Algorithm 1, by making block coordinate updates (Luo and Tseng, 1993). These blocks
will prevent the need for iterating over all the global parameters (cf. Section 3.1).

First we define a disjoint partitioning of the global parameters, denoted by R =
{J1, . . . ,JS}, in such a way that we obtain the maximum number of partitions under
the constraint that if two variables appear in each others’ Markov blankets, then they belong
to the same partition. That is, the partitions correspond to the connected components of
the global parameters in the induced moral graph restricted to these parameters. Note that
the partitioning is unique.

With this partitioning, the distributed VMP algorithm in Algorithm 1 follows immediately
from Section 3.2. At the Master node we now iterate over all the partitions in R following the
updating scheme of the projected gradient ascent method (Luo and Tseng, 1993) in Equation
(10). If the learning rates are properly adjusted, at each iteration we always increase the
lower bound because we move in the direction of the (projected) gradient. Note that we can
have different learning rates for the different blocks/partitions of the parameters.

For those partitions with a unique parameter, |Js| = 1, we can set the learning rate
ρs,t to 1, since we will then move to the maximum of L for the projected coordinate (see
Section 3.2). In this case the learning rate can be considered optimal in a greedy search
sense. For other partitions, we also recommend using a learning rate of 1, based on recent
theoretical analyses of natural gradient methods (Martens, 2014) and our experimental
evaluation, which shows a stable behavior under this settings. It is important to emphasize,
though, that for non-singleton partitions, the algorithm share convergence properties with
general gradient-based algorithms and convergence is therefore generally dependent on the
learning rate being employed.

Distributed VMP
Initialize q(θ) and q(H);
do

for in parallel: Hn ∈ H do
do

for each: Hn,j ∈ Hn do
Update q(Hn,j) using
Equation (5);

end
until LHn converges;

end
Collect and combine messages at
the master node.
for r = 1 . . . S do

η
(t+1)
Jr = η

(t)
Jr+ρr,t[ÔηL(η

(t))]+Jr
end

until L converges;

Algorithm 1: The d-VMP algo-
rithm
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Figure 3: (Left) Resulting mixtures of learnt posteriors for one of the attributes of defaulter
clients for d-VMP and SVI with different batch sizes. (Right) Results in terms of
test marginal log-likelihood (after 2000 seconds of learning).

4. Experiments

Our experiments are divided into two parts. First, we compare d-VMP’s capability of
explaining unseen data to that of SVI. We then investigate the scalability of the approach in
a distributed setting by performing inference in a model with more than 109 nodes.

4.1 Model fit to the data

As mentioned in the introduction, this paper is motivated by a real-life data set from a
financial institution. The dataset contains millions of records of financial operations from
millions of clients throughout several years. Due to confidentiality reasons, we only have
direct access to a representative sub-sample of 55.000 clients. The dataset contains 33 features
that describe the financial status of the clients, see (Borchani et al., 2015a,b) for further
details. The dataset is highly imbalanced, for instance is the percentage of defaulting clients
significantly smaller than that of non-defaulting ones. Additionally, the distributions of most
of the attributes are zero-inflated, multi-modal, and typically have from 30 to 90 percent
missing values.

The model employed in the evaluation has a naive-Bayes like structure, extended with
hidden variables. Attributes are continuous variables modelled with Gaussian distributions,
and have the Bernoulli-distributed “Defaulter” attribute as a shared parent. Each attribute
has a separate hidden binary variable as an extra parent, which is used to represent a local
mixture distribution for that attribute. Finally, all attributes share an additional hidden
binary parent used to model a Gaussian mixture at the global level. When the model is
“unrolled” it contains more than 3.5 million nodes, out of which 75% are latent variables.
Thus, the posterior to be approximated contains several million terms.

We compare our approach with Stochastic Variational Inference (SVI) (Hoffman et al.,
2013). SVI uses products of joint Normal-Gamma distributions to model the q distribution
over the global parameters. For the comparison we compute L, the variational marginal
log-likelihood of the training-data, for each of the sequential estimations of SVI after updating
the posterior distributions over the global parameters of the model. Figure 2 shows the
results of this comparison. We investigate the effect of SVI’s batch size by using 1%, 5%, and
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10% of the available data. We also consider the effect of different schedules for the learning
rate by using ρt = (1+ t)−τ and let τ take the values 0.55, 0.75, and 0.99. SVI was randomly
initialized, while d-VMP was initialized by running VMP locally over batch sizes with 1% of
the data to calculate local updates to the global parameters, and use the aggregated result
as the starting point.4 The experiments were run on a Linux computer with 32 computing
units and 64GB of RAM. It is clear that d-VMP quickly converges to significantly higher L
values than SVI ever obtains. Furthermore, SVI suffers from the small batch sizes, and its
behaviour is strongly affected by the learning rate.

The inferred models were also evaluated on a quarter of the data left aside as a test-
set. Figure 3 (right) shows the marginal log-likelihood over that data. The results are in
line with those reported in Figure 2, thus confirming that those results were not due to
overfitting. The differences in the log-likehood values confirm that d-VMP learns better data
representations. As an example, Figure 3 (left) shows the four-component mixture learned
by SVI (with different batch sizes) and d-VMP for a particular attribute given defaulting
clients. Only the central part of the distribution (which is centered around zero) is shown.5

For all four cases there is a mixture component at zero with very small variance, which
captures the zero-inflation. The remaining components collectively account for the rest of the
density. Notice how d-VMP produces a density with higher variance than SVI, and thereby
captures the tails of the distribution better. These results suggest that differences in test-set
log-likelihood may partly be explained by the SVI-models under-estimating the variance, an
effect we attribute to the subsampling approach.

4.2 Scalability

The financial data set that motivated our research contains millions of client operations
recorded throughout several years, so it is essential to analyze the scalability of the proposed
approach. The full data set is confidential, but the financial institution has therefore provided
us with a script that generates 12 variables that are similarly distributed to the corresponding
variables in the real data set. We produced a data set of 42 million samples, which is
used for the scalability test. Note that the resulting model contains more than one billion
(109) nodes once it is “unrolled”. More than 75% of the nodes are latent variables, leading
to a posterior containing hundreds of millions of terms. We used Amazon Web Services
(AWS) to get access to a distributed computing environment of sufficient capacity. The
AWS clusters are equipped with Hadoop distributions, on which we can conveniently run the
Flink (https://flink.apache.org/) implementation of d-VMP.6 Cluster configurations of
2, 4, 8, and 16 nodes were employed. Each node contains 8 processing units, so the level of
parallelization is between 16 and 128. Figure 4 displays the time required (wall-clock time;
y-axis – note the log-scale) to get models of a given quality (measured by the variational
marginal log-likelihood values; x-axis), using the four different computer clusters. The
scalability of the d-VMP implementation is evident. For example, less than 3.5 hours are
required with 16 nodes to get a model of the same quality as produced by 2 nodes in 25 hours.

4. Other batch sizes were evaluated giving rise to similar convergence schemes.
5. The distribution has a longer tail, which cannot be shown for confidentiality reasons.
6. A link to the source code will be including in the final version of the paper.
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Figure 4: Time required to obtain approximations of the quality given by different global lower
bounds when using 2, 4, 8 and 16 computational nodes. Each point corresponds
to a single iteration of the algorithm. Note the log-scale on the y-axis.

In general, doubling the computational resources gives a speed-up factor of approximately
1.7.

5. Conclusions and future work

In this paper we have proposed d-VMP, a distributed variational message passing scheme
for learning conjugate exponential models. Since d-VMP is an iterative message passing
scheme, it leverages from the memory management of modern big data frameworks like Flink
to obtain a time-efficient and scalable implementation. Theoretical analysis of the algorithm
supports the favorable learning behavior we have observed in practice.

The financial data-set that inspired this work is really a snap-shot of a data stream,
and we plan to investigate the effects of replacing the underlying model structure with a
dynamic model. High-speed data streams pose practical problems like limitations wrt. both
computation time and available memory to store the streams. We are therefore interested
in examining both theoretically and in practice how (potentially) inaccurate messages sent
from the workers to the master node affect the robustness of the learned results.

We would also like to explore the potential of d-VMP for text data using LDA-like models.
Here the high-dimensional multinomial distributions (size given by the size of the vocabulary)
will have many states (i.e., words) with low probability. Therefore, stochastic approaches
might experience problems when sub-sampling the data. Moreover, many large text corpora
are stored in distributed environments, which also harms the use of these methods.
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